
RL-TR-97-210
In-House Report
March 1998

MULTI-PARADIGMATIC PROGRAMMING: A
CASE STUDY

Michael L. McHale and Roshan P. Shah

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19980430 102
AIR FORCE RESEARCH LABORATORY

ROME RESEARCH SITE
ROME, NEW YORK

[TfllC QUALITY INSPECTED 3

RL-TR-97-239 has been reviewed and is approved for publication.

APPROVED:
JOHN J. CROWTER
Project Engineer

FOR THE DIRECTOR:
/JOHN A. GRANIERO. Chief Seien 'JOHN A. GRANIERO, Chief Scientist

Command, Control & Communications Directorate

DESTRUCTION NOTICE - For classified documents, follow the procedures in DOD
5200.22M. Industrial Security Manual or DOD 5200.1-R, Information Security Program
Regulation. For unclassified limited documents, destroy by any method that will prevent
disclosure of contents or reconstruction of the document.

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory mailing list, or if the addressee is no longer employed by your organization,
please notify AFRL/IFTD, 525 Brooks Road, Rome, NY 13441-4505. This will assist us
in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

ALTHOUGH THIS REPORT IS BEING PUBLISHED BY AFRL, THE RESEARCH WAS
ACCOMPLISHED BY THE FORMER ROME LABORATORY AND, AS SUCH, APPROVAL
SIGNATURES/TITLES REFLECT APPROPRIATE AUTHORITY FOR PUBLICATION AT
THAT TIME.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

REPORT DATE 1. AGENCY USE ONLY (Leave blank) 3. REPORT TYPE AMb DATES COVERED

In-House March 1998
4. TITLE AND SUBTITLE

MULTI-PARADIGMATIC PROGRAMMING: A CASE STUDY

6. AUTHOR(S)

Michael L. McHale and Roshan P. Shah

5. FUNDING NUMBERS

PE-61102F
PR - 2300
TA-C5
WU-02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AFRL/IFTB
525 Brooks Road
Rome, NY 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

RL-TR-97-210

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFTB
525 Brooks Road
Rome, NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-97-210

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Michael L. McHale/IFTB/(315) 330-1458

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This effort initiated an investigation of an extremely modular programming technique using multiple languages and
programming paradigms. The investigation consisted of the implementation of a computer aided language learning program
that uses definitions from semantically chosen vocabulary terms. The original problem was analyzed and divided into three
modules: the interface, the word selector and the dictionary. Each of the modules (sub-programs) was handled using a
different programming language and paradigm; procedural, logical and object-oriented. The end result was a small
Windows based program with a strong artificial intelligence (AI) component. The system demonstrates the ease of
development of multi-paradigmatic programs that combine AI techniques with a common, widely accepted type of
interface. While this type of programming requires further studies, the preliminary assessment is that it is well suited to be
the method of choice for future hybrid AI systems of medium size.

14. SUBJECT TERMS

artificial intelligence, computer programming, logic programming, computer-assisted
language learning (CALL)

15. NUMBER OF PAGES

36
16. PRICE CODE

20. LIMITATION^ OF ABSTRACT

U/L

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94 jmC QUALITY INSPEOTaS &

Table of Contents

Chapter 1

Introduction 1

Multi-Paradigmatic Programming 4

TheMCB.. 5

Chapter 2

Problem Selection 10

Classroom Scheduling 10

CALL 11

Chapter 3

Multi-Paradigmatic Approach 14

Implementation 14

The Dictionary 14

Word Selection 17

The Interface 19

Extensions and Testing 24

Chapter 4

Summary 25

Bibliography 27

List of Figures

1. Original and Mutilated Grids 6

2. Original and Mutilated CBs 7

3. Prolog code for Quicksort 8

4. Randomly Selected Choices 12

5. Semantically Selected Choices 12

6. Pseudo-Prolog DCG \ 19

7. Timer Screen 20

8. Question Screen 21

9. Visual Basic Code for Prolog Initialization 21

10. Call Word Selection 22

11. The Correct Word was Selected 23

12. An Incorrect Word was Selected 23

Chapter 1

Introduction

Historically, computer programming has been divided into two camps. The

first uses one language for every application regardless of the applicability of the

features of that language to the problem. The second, the more productive method,

chooses a language whose features most closely match the problem to be solved.

The first approach is typified by any number of general language communities,

whose advocates consider their favorite language as the best choice (compromise)

for power, speed and generality. While loyalty to a language can develop the ability

of a programmer to handle a wider and wider array of problems that are difficult for

the language, it can also lead to myopia. As Baruch observed, "If all you have is a

hammer, everything looks like a nail."

The second approach selects a language, from those available, to do the task at

hand. For manageable problems, with no surprises, this approach works well. But if

the task has some out of the ordinary requirements then the group may lack the

expertise in the language to accomplish the task. It is as if a carpenter is hired to

replace a door. She has a "complete" tool set so is confident there will be no

problems. But when she gets to the site she finds the current door is hung with

square drive screws (who would have thought!) and she has no screw driver to

extract them with.

Over the last couple of decades a number of techniques have been developed to

overcome these shortcomings: structured and modular techniques help decompose a

problem into more workable sub-problems; libraries have been pre-fabricated to

obviate the need of recreating routines for difficult problems (i.e., problems with

which the tool or language has trouble); and the importing of techniques from other

programming paradigms (ex., the use of object oriented structures in BASIC).

This last technique has also given rise to languages that have been designed to

combine two or more programming paradigms into a single language: loglisp

(Robinson, Sibert and Greene 89); Leda (Budd 95); and C++ (Ellis and Stroustrup

1990) are examples of this. What these languages overlook is that much of the

power of a language comes from its syntax. For example, the Definite Clause

Grammar (DCG) syntax of Prolog allows one to write grammars in a very natural

way. A DCG representation of a simple sentence might be:

sentence -> noun_phrase, verb_phrase.

This is more than just "syntactic sugar". It allows the programmer to abstract away

from the implementation and concentrate on the problem at hand; writing a

grammar. When a language is designed to combine two or more paradigms under a

single syntax this language specific type of abstraction is usually lost. Using the tool

analogy, the combination of paradigms is like a Swiss Army knife. They may be a

useful thing to carry but carpenters do not use them in place of a screwdriver.

So, while multi-paradigmatic languages are a mixed blessing, some of the other

techniques mentioned above are more consistently useful. Modular programming,

for example, is a good thing. But after having designed the separate modules why

insist they all be programmed in the same language. What is really needed is a

division of labor. When building a house we let a carpenter do the framing, a

plumber do the plumbing and an electrician do the wiring. Why not use the same

approach in programming. Divide the problem into modules and select the language

best suited for each module. Then combine the modules to solve the original

problem.

The traditional way of linking languages like this is through foreign function

calls. This has been somewhat successful but is often inelegant for the programmer

because the operating system (ex., DOS) does not provide an easy, graceful way to

do this. That has changed with Microsoft Windows.

Microsoft Windows was designed as a friendly operating system that allows for

the integration of disparate applications (ex., word-processors, spreadsheets,

databases). Windows assists the integration through three mechanisms: Dynamic

Data Exchange (DDE) which allows for the transfer of data between applications;

Dynamic Link Libraries (DLL), a type of foreign function call that is linked

dynamically to an application at run time; and Object Linking and Embedding

(OLE), that allows the embedding of an object from one application inside another

(ex., a spread sheet or graph inside a word-processor document). These mechanisms

allow for extremely modular programming and the seamless integration of

applications. They also provide for the integration of disparate languages though

that was not their original intent.

DLL in particular, can be used to integrate programs written in different

languages. DLL can be viewed as executable "black boxes" (modules) that can be

used by any program or application that is equipped to work with them. Indeed,

much of the Windows programming interface (API) is built using DLL.

Windows, then, allows for the type of programming we desire to investigate. One

based on the following process:

1) Analyze the problem and divide it into natural, meaningful sub-problems

2) Choose the language that best suits each sub-problem

3) Write the modules for each sub-problem

4) Integrate the modules into a program that solves the original problem.

Step 1 probably deserves much more attention than we give it here but for now

we are assuming this step is doable. Step 3 is relatively easy. That is, given a

tractable sub-problem that is well suited to a language makes for a fairly easy

programming task. Likewise, step 4 is greatly facilitated by the Windows

environment and various Windows-based software. We will discuss Step 2 in more

detail even though it is not obviously difficult.

If the choice in step 2 came down to two related languages such as Pascal and C

or Scheme and Lisp then the choice might well rest on factors other than suitability.

That is, if both languages are suitable to the task then the choice might rest on

programmer preference, speed of execution or development time. For us, step 2

should probably be rephrased to read "choose the paradigm (and then the language)

that best suits each sub-problem."1 Each programming paradigm (ex., logical,

functional, procedural) has its own radical view of the world. For an imperative

language, like BASIC, a program is a step by step enumeration of the tasks to be

performed. For a logical language, like Prolog, a program is an instantiation of

variables that are true for a given pattern and constraints.

To program in the different paradigms requires a different mindset, different

viewpoints, different representations. How important are the different

representations for solving problems? Very. A good representation can make a

difficult problem easy while a bad representation can make an easy problem nearly

impossible. As an example, consider the following problem.

The MCB Problem

You are presented with two grids (Figure la and b) that are identical except b

has had two opposing corners removed. You are also given a large stack of tiles that

are 2x1 in size. Can you completely cover both grids with the tiles so that there are

no overlaps or overhangs? If yes, show each covering. If no, give a proof as to why

they cannot be covered.

1 Thus the term Multi-paradigmatic Programming (MPP).

a
Original Grid

b
Mutilated Grid

Tile

Figure 1. Original and Mutilated Grids.

Covering grid a is no problem. Grid b is not as obvious. One could try by hand for a

while to see if there is an easy solution. Or a program could be written to try all

possible layouts and either find one that works or thus prove there is none possible.

But there is an easier solution; one based on a new representation. Instead of

viewing the grids as simply grids, view them as checker boards (Figure 2a and b).

Covering a still remains trivial. Notice though that each tile you place on a covers

two blocks of different color; one white and one black. Since there are 32 of each

color it is trivial to place 32 tiles to completely cover the board. Now note that grid b

has had two squares of the same color removed. This leaves 32 white squares and

30 black squares. Therefore, regardless of layout, after placing 30 tiles on grid b

there are two white squares left uncovered. Since the tiles have to cover two squares

of different colors, grid b cannot be covered. The representation makes it obvious.

a
Original Checker Board

■u
Tile

b
Mutilated Checker Board

Figure 2. Original and Mutilated Checker Boards.

The representation, then, is paramount to the process of solving complex

problems. The various representations also provide power to the MPP approach.

Actually, there is something going on here that is more subtle than just the choice of

representations. There is also style. Obviously, if a program requires matrices then

one would want to write it in APL or some other language which handles matrices

with ease. But, because of the different viewpoints that languages have of

programming, many languages are shackled by what is considered "good"

programming style in that language. A case in point is C. We recently encountered

a book on programming style in C that advised never to write anything recursively.

This is a shame as C handles recursion quite nicely and some algorithms are

recursive by nature.

For example, when we first encountered the Quicksort algorithm (due to C.A.R.

Hoare) it was taught by a "dyed-in-the-wool" C programmer that believed in the

non-recursive nature of C. The result was a presentation of the algorithm from a

strictly iterative viewpoint.2

"Take a one-dimensional matrix of numbers and divide it in the middle. Then take

two pointers and move out in each direction from the middle swapping those

elements that..."

The result was a program description that was nearly incomprehensible. How much

easier it is from the recursive viewpoint.

"To quicksort a group of items divide the group into two; littles and bigs. (Where the

smallest big is bigger than the biggest little). Then quicksort the bigs and quicksort

the littles and put them back together into a single group."

quicksort(Group, SortedGroup) -> divide(Group, Littles, Bigs),

quicksort(Littles, SortedLittles),

quicksort(Bigs, SortedBigs),

join(SortedLittles,SortedBigs,SortedGroup).

Figure 3. Prolog code for Quicksort.

1 Though to be fair, Knuth's presentation of the algorithm (Knuth 73, Vol. 3, 114-123) was also iterative.

The recursive version is short, elegant and powerful. We wanted to investigate MPP

by applying it to a real problem whose sub-problems could benefit from this variety

of representations. The paradigms we were considering were logical, functional,

procedural and object oriented. The ideal problem should be complex enough to

benefit from a variety of approaches. For instance, it should require a user

interface, database access, some search and perhaps some conflict resolution. After

considering various problems we settled for class room scheduling.

Chapter 2

Problem Selection

Classroom scheduling is a complex, constrained resource allocation problem. The

problem consists of scheduling the students, teachers and classrooms for all the

subjects in a normal high school. Rather than just a single viewpoint, the problem

has various viewpoints to consider. The students, for instance, have a minimum

number of courses they have to take each year. Some courses are required (ex.,

English, Social Studies) while some are electives (ex., language, band). The teachers

have to teach so many hours a day but must have time for breaks and lunch. They

may also have preferences about when they teach certain courses. Satisfying the

preferences is not critical but it is something that should be attempted. The

classrooms are set in size and number and some are set for function (laboratories,

band room, gym). The problem is driven by the students' required and elective

courses and then constrained by class size and the teachers and classrooms that are

available.

We analyzed the problem, decomposed it, assigned the various tasks to different

languages, and began developing algorithms. Through this process we learned a

great deal about problem decomposition and some of the criteria involved in

language selection. Our time though, seemed to center on solving classroom

scheduling and not on multi-paradigmatic programming. We decided to try a

different task.

10

We selected a much easier problem but one that was still conducive to a multiple

language approach. As with our first selection, we needed an unclassified domain

that was widely and readily understood. We chose to do a computer assisted

language learning (CALL) program for learning vocabulary.

This type of program was among the first computer aided instruction (CAI)

programs. They have found a niche in helping motivated students learn items that

require straight memorization; like foreign language vocabulary. In their standard

form, the program selects four words along with their respective definitions. One of

the words is then designated as the word to be learned (the target word). The

target word and all four definitions are listed, and the student's task is to select the

correct definition from the incorrect ones.

As presented, this program could easily be written in BASIC, C, Pascal, or any

other general purpose language. Indeed, thousands of them have been. There is,

however, a shortcoming with the program as described so far. This type of program

is helpful only when used by motivated students - as the programs very quickly

becoming boring. There are two reasons for this. The first is that the task is highly

repetitious; read the word, read the definitions, pick one and see if it's correct. This

cycle becomes old within minutes. The second reason for the boredom is that picking

the right definition is often not a challenge because the alternative definitions are

poorly selected. The usual (traditional) method of choosing the other three choices

from the dictionary is to do it randomly, but as Figure 4 shows this may not be

11

sufficient. The figure gives the target word toreador and four definitions, all for

nouns. The student may have no idea what a toreador is, but given that it ends in or

knows that it is probably a person of some sort (ex., actor, doctor, governor) or a

machine (ex., compressor, monitor, projector). From this, it is simple to guess the

correct answer as being #2.

Toreador
1) The fact of having the skill, power, or other qualities that are needed in order

to do something.
2) A man who takes part in a Spanish bullfight, especially one riding on a horse.
3) A narrow arm of the sea between cliffs or steep slopes, especially in

Norway.4

4) The fur of the coypu.5

Figure 4. Randomly Selected Choices.

A better way to choose the alternative answers is to use semantically related

words. This approach is more of a challenge to the student and thus helps maintain

interest. It also provides the added benefit of aiding memorization by clustering

related terms. In the example above, this approach might choose the definitions for

commando, gaucho and sniper (see Figure 5).

1) A man who takes part in a Spanish bullfight, especially one riding
on a horse.

2) (a member of) a small fighting force specially trained for making
quick attacks into enemy areas.

3) A cowboy of the South American pampas.
4) One who shoots at individuals, especially enemy soldiers, from a

concealed or distant position.

Figure 5. Semantically Selected Choices.

3 ability
4 fjord
5 nutria

12

This significantly reduces the ability to easily eliminate the alternative answers

and reinforces the learning of the words by forcing the student to differentiate

similar terms.

However, if the semantically related definitions are pre-selected at program

design time then the amount of work for the program designer increases

dramatically. That is, the designer not only has to acquire the vocabulary (the

words and their definitions) but has to determine which words can accompany each

word and explicitly mark them. This could be done be developing groups of related

words (ex., toreador, commando, gaucho, sniper) or more generally by creating a

semantic network of the words.

We had no desire to spend our time creating a semantic network or a large

lexicon for the program. We did not need to as we already had both available.

13

Chapter 3

A Multi-Paradigmatic Approach

The CALL system (WordGenius) is comprised of three modules: the interface; the

word and definition selector; and the dictionary. The complete system could have

been written in Visual C++ or some other general purpose language but we opted

for a multiple language, multiple paradigm (MPP) approach. The interface was

written in Visual Basic (object oriented and procedural), the word selector was

written in Prolog (logical) and the dictionary came from a pre-existing language

resource. We decided not to modify the dictionary in any way because it was already

represented in a semantic network. That left us with two programmers, two sub-

programs and two languages. Each programmer could then use the language in

which they felt most comfortable to write a sub-program that the language could

easily handle.

The Implementation

We will discuss each of the modules below. We will start with the dictionary

since it was not modified at all.

The Dictionary

The dictionary we use is the noun.dat file from WordNet (Miller 93). The data

consists of more than 87,000 nouns arranged in synsets (sets of synonyms) with

each synset having a common definition. The data is further arranged

14

hierarchically for hyponymy (is-a relations) and meronymy (has-a or has-part

relations). The file itself is a binary file arranged by byte-offset. The format of the

data file consists of more than 60,000 lines, the form of which is shown here (WNDB

93).

synset-offset lex# pos w_cnt word id [word id ...] p_cnt [ptr ...] gloss

Where

synset-offset the current byte offset in the file (8 digits)
lex# the lexicographer file from which the data was taken (2 digits)
pos part-of-speech (n for nouns)
W_cnt the number of words in the synset (2 digit hexadecimal)
word ASCII form of the word (variable length)
id the sense of the word (1 digit hexadecimal)
[...] optional repetitions (as many as needed)
p_cnt the number of pointers from the synset (3 digits)
ptr a list of pointers from the synset (see below)
gloss a definition, an example sentence or both (variable length)

A pointer (ptr) consists of a pointer symbol followed by a space, the synset-

offset of the target synset, followed by a space, a pos to indicate to which data file

the offset refers, followed by a space and a four digit source/target field that

indicates which sense of the synset (source and target) the offset refers.

The pointer symbol for nouns are:
I Antonym
@ Hypernym
M* Hyponym
#m Member meronym
#s Substance meronym
#p Part meronym
%m Member holonym
%s Substance holonym
%p Part holonym
s Attribute

15

For instance, the entry for landing is:

00026059 04 n 01 landing 0 006 @ 00023747 n 0000 ~ 00029218 n 0000 %p
00158083 n 0000 ~00171746 n 0000 ~00171849 n 0000 ~ 00172390 n 0000 | the act
of coming to land after a voyage

This can be understood as:

00026059 the line starts at the 26,059th byte of the file
04 it was taken from the fourth file
n it is a noun
01 there is 1 member of the synset
landing the word is landing
0 this is the first sense of the word
006 there are 6 pointers
@ 00023747 n 0000 the superordinate of landing (arrival) is at byte 23747, it is a

noun and the pointer refers to all the words of this offset and
that one

~ 00029218 n 0000 a subordinate of landing (debarkation) is at byte 29218, it is a
noun...

%p 00158083 n 0000 a (has-part) subordinate of landing (landing approach) is at
158083, it is a noun ...

- 00171746 n 0000 a subordinate of landing (touchdown) is at byte 171746, it is a
noun ...

~ 00171849 n 0000 a subordinate of landing (aircraft landing) is at byte 171849, it
is a noun ...

~ 00172390 n 0000 a subordinate of landing (splashdown) is at byte 172390, it is a
noun ...

| the act of ... the definition of landing is the act of ...

We use the IS-A relations for the definition selection. These relations are a

representation of a semantic network but one that is local in nature. To find where

any given word fits into the network it is necessary to follow the parent links back

to one of the dozen or so top elements in the network. This is not a concern for this

particular program as we only need the local links to find siblings. If we were to

expand the program so that the word selection was determined by the user (i.e., for

16

topic) then we would need to determine that the word selection was from the correct

part of the hierarchy.

The program, as written, is of marginal use because it does not constrain the

word selection to topic. WordNet has 87,000 nouns many of which would be

unknown to most users. The semantic hierarchy in WordNet would allow limiting

choices to one domain and this is probably the only way the program could

productively be used. We chose to use WordNet because of the existing semantic

hierarchy and because its size demonstrates nicely the ability to "scale up" to a real

domain. Also, as can be seen above, the lines of the noun file are structured but

variable thus making them perfect candidates for parsing with Prolog.

Word Selection

Word selection is done by Prolog. The target words that are used are chosen

randomly but the alternative definitions for the word are siblings of the target word

in the WordNet IS-A hierarchy. Only slightly more than four thousand of the 60,000

lines in the dictionary have four or more children. That means that this process of

selection only uses one out of fifteen possible words as a target word. Were this

anything but a demonstration program, that would be a serious limitation.

The random selection process does not demonstrate any intelligence in the

selection of words but rather was chosen because it was easy to do and

demonstrates the use of semantically related words for this type of program. If a

word does not have three or more siblings we should allow other relations

17

(ex., descendents of siblings, cousins) as long as the resulting words are not

synonyms of the target word. The selection process needs to know both the

structure and size of the dictionary.

The program, as implemented, selects a random number less than the dictionary

size (in this case 9 billion bytes), opens the dictionary for binary reading, sets the

pointer to the random location (random number of bytes) and reads to the end of the

line in which it finds itself. Having reset the pointer, the next line is then read and

parsed for input. This process (selection of a random location, the reading and

parsing of a line) continues until a line with at least four children is found. Then,

one of the children is selected as the target word and its siblings are selected as

alternative definitions. The words and definitions are returned to the Visual Basic

program.

With the exception of parsing the lines, none of the above is very logical in

nature; not very Prolog like. We are sensitive to that fact but there are two reasons

why Prolog was chosen for all these tasks.

1) The Prolog we are using, Amzi!, has built-in predicates that perform all the

functions needed (i.e., binary file I/O).6

2) On average, 15 random numbers have to be generated to find a line with four

children. It was easier and faster to have Prolog backtrack into the random

6 Amzi! 's file I/O is actually implemented in C++.

number generator than it was to have Visual Basic loop over the call to

Prolog.

line -* filejnfo, wordjnfo, word_group, ptr_group, gloss,
filejnfo -> offset, lex_file.

offset -> {number}.
Iex_file -> {hex number},

wordjnfo -* n, cnt.
n -> {n}.
cnt -> {hex number}.

word_group -> [].
word_group -> word, id, word_group.

word -> {alphabetic}.
id -> {hex number}.

ptr_group -» [].
ptr_group -> p_cnt, ptr_groups.

p_cnt -> {number}.
ptr_groups -> [].
ptr_groups -> ptr, ptr_groups.

ptr -> ptr_symbol, offset.
Ptr_symbol -»{!|@h|#m|#s|#p|%m|%s|%p|=}

gloss -> gloss_symbol, {string}.
gloss_symbol -> {|}.

Figure 6. Pseudo-Prolog DCG.

The Interface

The interface and program control were written entirely in Visual Basic. The

interface consists of two screens; the timer screen (Figure 7) and the question screen

(Figure 8). When program execution begins, the timer screen is displayed and the

student has the option of having the program run continuously or have it run at set

intervals. The interval option is convenient when the student wishes to interact

with the program over an extended period but has other work that also needs doing.

It also allows for interaction over long periods without the program becoming

boring.

19

'-.♦, Word Genius Timer
File i

Word Genius can operate on a timer. Indicate
the length of the interval to pass before Word
Genius pops up again.

| <~ 5 Minutes (~ 20 Minutes

r 10 Minutes r 25 Minutes

r 15 Minutes r 30 Minutes ' :

i

1

V f Run Continuously "... ■.. . ■ -.. ■"■■{-■

- • -•'■' ':.■•.' "'-.'•''■'"' ■■[■-■'''■•'■■'■>■ ^'.:':

ililfi
illtlti 1 ' ÖK- . | : '.,- . JQancet'' , .., •■ .

Figure 7. Timer Screen.

Once the student makes a timer selection, the Visual Basic program initializes

the Prolog program and requests a target word and associated definitions. This is

done using the Amzi! Prolog Logic Server (AMZI4.DLL) and an extension for Visual

Basic that is supplied with Amzi!. This is a very simple to use interface between the

languages. Figure 9 shows the basic code for initializing the Logic Server.

The Visual Basic code for word selection (Figure 10) is also straightforward.

Visual Basic calls the Prolog procedure main which does the word and definition

selection, and asserts them into the Prolog knowledge base. Then each word and

definition is called separately using the procedure word(X.Y). It would be possible to

20

I* Word Genius 1.0
• Eile options

Paraphysis

r Filaments from a cobweb,

r Any of the threadlike filaments forming the mycelium of a fungus.

T A sterile simple or branched filament or hair borne among sporangia.

r Any of various slender filaments that function as roots in mosses and ferns and fungi etc.

Click the box next to your answer.

Figure 8. Question Screen.

nil iimimiiuiniimmmi»»» »»mim»» »mmiutHiii

" Main Form Handler Starts up Amzi! Prolog
(imiinmimDimiim iimiiniiJiimiiniiiiuiiiniiiiimiDiinmimiii

sub form_load()
Dim re As Integer, tf As Integer
Dim Term As Long
Dim xplname As String

' Setup our xpl pathname
xplname = App.Path + "\FLASH.XPL"

' Initialize the runtime and load FLASH=.XPL, which contains
' all the rules and expertise for this application
InitLS (xplname)
LoadLS (xplname)

End Sub

Figure 9. Visual Basic code for Prolog Initialization.

pass all four words and definitions as parameters rather than assert them and then

collect them. The former would be cleaner from the Prolog side but perhaps a bit

more unwieldy from the Visual Basic side.

21

Sub Words()
11I)!I1IIII|[|II1!IIIII))[I|)JI)JJ))J»)])I!J)

' Display All the Words
!!]n)iiMi)))j!)]n)!!i[)))>!!)ji!nnjjnm

Dim re As Integer, tf As Integer
Dim Term As Long

'Run main first
tf = CallStrLS(Term, "main")

' Issue the Prolog query: word(X.Y)
tf = CallStrLS(Term, "word(X,Y)")

' Loop through all the words
While (tf = True)

Call GetArgLS(Term, 1, bSTR, PWord)
Call GetArgLS(Term, 2, bSTR, PDefinition)
Call AssignWords(PWord, PDefinition)
tf = RedoLS()

Wend

End Sub

Figure 10. Call Word Selection.

After the word selection has been accomplished, the target word and four

definitions are displayed, as was shown in Figure 8. The student selects one of the

four definitions by clicking on it with the mouse. If the correct answer was selected

(Figure 11) it is highlighted (in bold) and the other choices are deactivated. The

words corresponding to the alternative answers are displayed above each definition.

If the correct answer was not selected (Figure 12) then the correct definition is

again highlighted in bold while the definition the student selected is highlighted in

red. The words corresponding to the alternative answers are again displayed above

each definition.

22

10 For 16 62%

Paraphysis

■r A sterile simple or blanched filament or hair borne among sporangia.

A'.v nf«S>p <S::':atfS*p Htar.'.ra«.-:- homing the myMiiam fit «i1«nr,t!<J.

■it"

r Ai'r'tif various st-.ndcrti'omc.rts thaMunolioii as mots in mosscütjm! IBIRS ;«>ri Songista,

m> Correct!!

Figure 11. The Correct Answer was Selected.

Paraphysis

r Filaments from a cobweb:

r A-ty fll >hr thi ewKV. KamcrilS fo-siiir >| His myoöMiJ* ot a fuf,qus.j

r A sterile simple or blanched filament or hair borne among sporangia.

r Any ot various -«.Imnta fii»im»lls> «.mfi.ncüo.i ;ss roots m n^ss.* o..d tarns and fungi «Is.

Wrong!

Figure 12. An Incorrect Answer was Selected.

23

When the student has read the correct answer they can click anywhere on the

window to either get the next question or start the timer. The timer runs in the

background and uses very little computer resources. Notice too that the program

keeps track of how many questions have been answered and the number and

percentage that have been answered correctly.

Extensions and Testing

We have tested the system with four different dictionaries: WordNet, as

described above; a subset of WordNet consisting of just the shorter words; a hand-

coded dictionary of English vocabulary (approximately 200 words); and a hand-

coded bilingual dictionary of Tagalog (Filipino) terms and English definitions. No

changes to the interface were required for the various dictionaries. The only

changes to the Prolog engine that were required was a simplification of the reading

predicates (for text files instead of binary) and a modification to the sibling choices.

These changes took less than one hour to complete.

With minor modifications to the interface one could write a program that

allowed the student to choose the file desired as long as the files used some line

structure similar to

w(index, relation, word, definition)

where relation was either a list of allowable siblings or the location in a semantic

hierarchy. The dictionaries, then, would become basically data files for the Prolog

program.

24

Chapter 4

Summary

We have investigated the use of multi-paradigmatic programming (MPP)

techniques for a knowledge intensive, interface intensive task. The use of multiple

languages from different paradigms to create the program proved to be efficient and

versatile.

Obviously, doing a program's interface in the object oriented Visual Basic makes

much more sense than doing it in Prolog or some other language less suited for user

interface. Thus the question arises, "why not do the entire program in Visual

Basic?" The answer, though, follows the same logic: another language, like Prolog,

can handle the background processing better than Visual Basic. By exploiting

individual languages for their strengths, programming applications becomes easier

and faster, and the applications themselves improve in speed and capability.

MPP involves some overhead in the initial program design as it requires

substantial decomposition of the problem (more so than single language

approaches). This overhead is more than offset by the power and versatility of the

MPP approach. The power and versatility may come with too much cost for single

programmers but should be highly useful for team (i.e., larger software) projects.

Since MPP is an extension of modular programming, it reaps the benefits of that

approach. A project leader can divide the tasks so that task experts (ex., interface

designers) can deal directly with programmers that deal mainly with their task

25

(ex., Visual Basic programmers). The programmers are dealing only with tasks that

their language was designed to do. This makes their job easier as they are not

trying to fit square pegs into round holes.

This last point cannot be overemphasized. Each programmer in an MPP project

gets to write "pure", or at least nearly "pure", code. For instance, in Prolog it would

be possible to pass all parameters as arguments so that there would be no extra-

logical predicates; not even a print statement.

Our choice of Prolog for this project was not entirely arbitrary. It was chosen

largely because it naturally complements Visual Basic. Prolog language developers,

like developers of other languages used for artificial intelligence (i.e., lisp, logo,

scheme, Smalltalk) have traditionally emphasized the handling of knowledge

representations - not interface development. Thus, most of them would be good

candidates for MPP. If our experience with MPP is a fair indication, then MPP may

well be the future for medium sized artificial intelligence programs.

26

Bibliography

Budd, T. (1995) Multiparadigm Programming in Leda. Addison-Wesley, Reading,

MA.

Ellis, M.A. and B. Stroustrup (1990) The Annotated C++ Reference Manual.

Addison-Wesley, Reading, MA.

Krumm, R. (1994) Making Windows Applications Work Together. M&T Books, New

York, NY.

Miller, G. (1993) Five Papers on WordNet. Available from ftp://ftp.cogsci.

princeton.edu/pub/wordnet/5papers.ps

Knuth, D.E. (1973) The Art of Computer Programming. Volume 3. Searching and

Sorting, pp. 114-123. Addison-Wesley, Reading, MA.

Robinson, J.A., E.E. Sibert and K.J. Greene (1989) The Loglisp Programming

System. RADC Technical Report 85-89. Rome Air Development Center, GAFB, NY.

Teiles, M.A. (1994) Mixed Language Programming. M&T Books, New York, NY.

WNDB (1993) The WordNet database. Available from

http://www.cogsci.princeton.edu/~wn/doc/man/wndb.5WN.html

«U.S. GOVERNMENT PRINTING OFFICE: 1998-610-130-61174

27

